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THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science
Institute for Management Science and Engineering

AN IDEALIZED EXACT PENALTY FUNCTION
by

Garth P. McCormick

1. Introduction

In [1] and [2] Fletcher developed an exact penalty function for
constrained optimization problems. That is, he showed how o0.12 unconstrained
minimization problem could yield the solution of a constrained problem
(in a sense to be defined in Section 2). In this paper, an idealized exact
penalty function is derived from considerations of the movement of a par-
ticle under different forces. This is done first for the equality constrained

problem and then gener:.lized to the inequality constrained case.

The idealized exact function has flow lines similar to those observed
for the particle. It is shown that Fletcher's exact penalty function is an
approximation to the idealized one near constraint boundaries. A new com-
putable exact penaliy function which uses second order information is devel-

oped which provides a better approximation to the idealized one.

2. Movement of a Particle Under Different Forces

Consider the equality constrained nonlinear programming problem:

minimize f(x)

n
X € E

(1)
subject to x € R = {x|h(x) = 0}
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where h(x) is a p by one vector of functions and wherz x ¢ AL

an n dimensional vector.
A physical situation which models this is one in which the particle

in E" is acted upon by forces which tend to decrease the function f(x)
and which also tend to drive the particle to a point satisfying the con-
straints. Many models of flow result depending upon the relative magnitudes

of the force lines. In Figure 1 is one situation associated with the problem

minimize - x + y
(x,y) (2)
subject to x2 + y2 =1 .
In Figure 1 the lines of force off the perimeter of the circle are entirely
associated with driving the particle to a feasible point. This is done in
a way to minimize the distance between the particle and the feasible region.
Once on perimeter, the lines of force become the gradient of the objective

function projected onto the tangent plane.

An exact penalty function whose gradient vector approximates this
flow pattern can be formulated as:
f(Pr(x)] if x € R

E(x) =¢ (3)
(x) if x ¢ R

where Pr(x) is the projection function which maps any point x into the
'closest feasible point' and where Kjkx) is the minimum distance from x

to the set R given by

Lx) = min || x -y || . (4)
y € R

The major difficulty with this exact penalty function is that neither
it nor its derivative is continuous. Algorithms for minimizing unconstrained
functions require (usua!ly) that the first derivatives of the function be
continuous. Furthermore, following these flow lines is noct necessarily the

quickest way to solve the problem. A better strategy would be to anticipate

B S S e e e . = SEOTE
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the flow near the perimeter and create a line of flow which is a combina-
tion of the projected gradient on the perimeter and the gradient of the
squared distance function. The resulting lines of flow would be those pic-

tured in Figure 2. An associated natural exact penalty function would be
E(x) = f(x-d(x)] + qd(x)"d(x) (5)

where x'- d(x) 1is a point solving (4) and q 1is a scalar greater than 0 .
There are difficulties with this definition involving uniqueness. Note that
d(x) 1is not unique in example (2) when (x,y) = (0,0) . Usually the vector
d(x) is unique but if it is not, to complete the definitiun, the following

is used:

define D(x; = {d|x-d solves (4)}
Let d(x) be a vector from D(x) such that
f[x-d(x)) (6)

minimal. This specifies the value of the function E(x) although not
necessarily the vector d(x) since theoretically there can L2 more than one

vector in D(x) satisfying the criterion (6).

This exact pz2nalty function (5) combines a penalty associated with
being away from the fessible region and the value of the objective function
at the closest feasible point. The differentiability of the function (5)
depends upon the differentiability of the distance function d(x) .

Some isovalue contours of this penalty function assocjated with problem

(2) when q =1 are given in Figure 3. Note that this is not continuous at
(0,0) , although from the definition E(0,0) = - /2 + (1/4) since
D(0,0) = {d'Hdilz'—u} and d(0,0) = (+/2/2,-Y2/2)

The equivalence of the unconstrained minimization of the idealized
exact penalty function (5) and the constrained problem (1) is summarized in

the next three theorems.
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Theorem 1. (Assume f, {hj} are continuous.) If x is a local uncon-
strained minimizer for (5), it 1is a local minimizer for (1).
Proof: First it will be shown that if d(x) # 0 , for every 0 < e <1 ,
E[x-ed(x)] < E(x) . (7)
Obviously d(x) # 0 => d{x~ed(x)] # 0 , since otherwise x - ed(x) would be
a closer feasible point to x than x = d(x) . Also note that
fx-ed(x)] - (l-e)d(x) ¢ K ,

and thus by definition

d[x-ed(x)]]] < Q=) |ldx)]|] . (8)

Also by definition,

4G |] < Jlx = {[x-ed(x)]~d[x-ed(x)]}]] i
9

(using the triangular
inequality)

< c]ld(x)!! + ]]d[x-cd(x)]]l

(assuming d(x) is not proportional to d[x-ed(x)] ) . Together (8) and (9)
imply that (1-e)d(x) 1is the single element in D[x-ed(x)] . Because of (6),

£ [x-ed (x}-d[x=ed(xI]] * 4] |aln~ed@)I][° = Him-dlxd] + qlt-e) | 1ot} ]2

< fx=d(x)] + q‘ld(x)‘lz (because d(x) # 0 assumed).

This completes the procf of (7).

Because x is ¢ local unconstrained minimizer it follows from (7)
that d(x) = 0 and hence that f(x) = E(;) . Furthermore, there is a neigh-
borhood N(x,8) such that E(x) > E(x) for all x e N(x,8) . Let
x € R NN(x,8)

"
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Then

L}

f(x) E(x) (d(x) = Q0 for x e R)

E(x) (since x € N(x,6)

v

= f(x)

This completes the proof of the theorem.

Theorem 1 is imbortant in that it states that use of the idealized
exact penalty function does not introduce spurious minimizers. In the next

theorem the converse is proved.

Theorem 2. Suppose f, {h } are continuous functions. If x 1is a local

J

minimizer for (1), then it is an unconstrained local minimizer for (5).

Proof: 1If the theorem is not true, there is an infinite sequence of points

{xk} where X — x such that

f[xk-d (xk)]
< Flxdx)] + ad(x) d0x,) = EGx)

< E(x) = f(x) ,

for all  k , with xk-d(xk) £ R. Since x, - x —=> 0 , d(xk) ~—> 0 , and

k

therefore x, -~ d(xk) ~> x . This contradicts the assumption that x 1is a

k

minimizer for x € R .

Theorem 3. Suppose f, {h,} are continuous functions. 1If x is a global

j

unconstrained minimizer for (5), it is a global minimizer for (1). 1f x*

is a global minimizer for (1), it is a global unconstrained minimizer for (5).
Proof: The proof is obvious and will not be given.

It is useful to examine the idealized exact penalty function in terms
of its derivative and its Hessian matrix. These results will be useful in

developing a computable exact penalty function in the next section.
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3 - ol
Theorem 4. Suppose f, {h } € C° . Suppose x 1is a point where f'(x)

]

has full row rank and suppose further that d(x) is unique and continuously
lifferentiable in a neighborhood about x . If x 1is an isolated unconstrained

minimizer for the idealized penalty function (5), {i.e., if E'(x) = 0 and

E"(x) 1is a positive d-finite matrix, then x satisfies the second order

sufficiency conditions for an isolated local minimizer for (1).

Proof: Assume for the moment that at a point x , d'(x) and d"(x) are

defined. Using the chain rule of differentiation,

E'(x) = ' [x-d ()] [1-d(x)] + 2q d(x)d"(x) , (10)
and
E"(x) = {f'[x-d(x)] ® In} {=d"(x)} + [I-d"(x)] f"{x-d(x)] [I-d'(x)]
T (11)
+ 2q d'(x) d'(x) + 2qd(x) ® In]d"(x)
Consider any point x near % . Let z*(x) solve the problem
minimize [Iz—x]lz subject to h(z) =0 .
z
Note that d(x) = x- z*(x) . For x close enough to X , clearly z*(x) is

close to x and the metrix f'[z*(x)] has rank p . Therefore, the first

order necessary conditions apply and

[2%(x)=x] 2 + h'[2%(x)]T uk(x) = 0 ,

where

sk (x) = - (h'[z2*CG)Th' [2%x) 171 2h' [2%(x)] [x-z*(x)12 .

Another way of writing this is

P(x)d(x) = 0 (12)
where
i " R 3 T,-1, ,
P(x) [1-hn'[z%(x)) (h'[2*(x)]h' [2*(x)] } "h [z*(x)]] .
S B
;
H
B an TN - e ——— i
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Also,
(13)

h(x-d(x)] = h{z*(x)] = 0 .

Differentiating (13) vields

h'[x-d(x)] [I-d'(x)] = 0 . (14)

Differentiating (12) yields

PO () + (1 @A) 1" () = 0 . (15)
When d(x) = 0, (14) implies that

h'(x) = h'(x)d'(x)
and using this in (15)Ayields

d'G) = h' )R GOR' () o T . (16)

Differentiation of (14) directly yields
(17)

{h%[z*(x)] ® ) {d"(x)} + {I-d'(x)}h;[z*(x)]{l—d'(x)} =0 .
From Theorem 2 it is known that d(x) = 0 (and therefore that h(x) = 0)

Thus, formula (16) can be used.

E'(x) = 0 , implies, using (10) and (16), that the first order
The

Then
necessary conditions arz satisfied at x for a constrained minimizer.

appropriate Lagrange multipliers are given by the formula
W = o T @ N
Thus,
£'() = u(h'(x) (18)
The first term in (11) can be replaced using (17) and (18) and summing

appropriately with

- [1-4'(0) [uGo" @ T I"G0) [1-d' ()]

o i

T B i, i
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Using this, thean,
att S "oy =T T £ l"'T (. |—T'1 Ry
E"(x) = PO [£"G)-{u()” @ 1" G)]P(x) + 2qh" () [h'(OR' () 17 h'(x) . (19)
Because E'"(x) was assumed positive definite, it follows that
2P [0 -{uG " @ 1G] Pe)z = 2 [£" ) - (u@) ' @ L 0]z > 0

for all 2z where h'(;)z = 0 . Thus the second order sufficiency conditions

are satisfied at x .

3. Fletcher's Exact Penalty Function (Equality Case)

In [1]), Fletcher proposed an exact penalty function (with variations)

for the equality constrained optimization problem (1). The variation closest

to the natural idealized function developed in (5) is
Fix) = £(x) - £°(0 h'0)7 b)) + arT 00 T v e (20)

where h'(x)m is the Penrose-Moore generalized inverse of h'(x) , the p by

B

n derivative matrix of h(x) . In general, for a matrix A , A 1is the

unique matrix satisfying

+
AAA = A

&b 4
Ataa" = 4
hA')T = A’

By

aa" e A% .

T Let z*(x) denote a solution of the minimum distance problem:
minimize If X=2Z l]z
z

subject to h(z) =0 .

=] =

. - . e - . -~ - SO —
Y e B e re———

- — — —
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A first order Vaylor's series approximation yields
0 = hlz*(x)] = h(x) + h'(x)[z*(x)-x] .
The solution to this approximation with miniumum norm is
+
- d(x) = z*(x)-x = - h'(x) h(x) .

Substituting this in the idealized exact penalty function (5) using the
approximation f[x-d(x)] = f(x) ~ f'(x)d(x) yields (20) above directly.

Viewed from this point of view, Fletcher's exact penalty function
for equality constraints is a first-order approximation to the idealized

penalty function (5). .

Fletcher was able to show that if a point x* satisfied the

second order sufficiency conditions associated with (1), it was an isolated
local unconstrained minimizer of the penalty function (10) for a large enough
B value of q . This is a weaker theorem than Theorem 2 which made that state-
ment for any value of q . More important, there is no corresponding theorem
for (20) analogous to Theorem 1. That is, the question of whether or not (20)
has local unconstrained minimizers which are not local minimizers for the
equality constrained problem (1) was not resolved. A partial resolution of

this question can be obtained by making a more precise approximation to

i z*(x)
Using a second order approximation,
. \ i 1 3
- d(x) = z%(x) - x = - h'(x) [h(x) + 3 v(x]
I
7 where +vy(x) 1is a p by 1 vector whose jth component is

ST T o ' +
yj(x) = h(x)  h'(x) hj(x) h'(x) h(x) .

Using the second order approximation

Flx-d(x)] = £(x) - £'(x)d(x) + % d(x) TE" (x)d (x)

«1 -




e e————

Bl e

? b et

T-359

and substituting the d(x) above in (5) yields (throwing away terms beyond

quadratic in h(x))
MGO = £ - £100 1G0T R - 3 £1e0n 0" v
+4 00" R (x) T £"(x) B'(x)" h(x) (21)
¥ qhx)h' (07T w0’ h'x)

When at x the derivatives {h;(x)T} s, J=1,...,p are linearly
independent, then
+ To=1
h' ) = h' )T ('O (x))
The quantity

wlx) = BEGYT ()"

is an estimate of the Lagrange multipliers usually associated with a local
minimizer of (1). In order to differentiate M(x) 1is it neressary to obtain

u'(x) . When h'(x) has full row rank, it can be shown that

A} Tl 11
0 (x) = (h'Gon' Tt [, @ (£ G)-ux) W' (x)]} b )
(22)

+ 0060 M- T B 1) he)

Assume that at a point x , h'(x) has full row rank and that h(x) = 0 .

Using (22), then M'(x) and M"(x) are

MU(x) = £'(x) - u)Th'(x) , (23)
and
1) = = b [ @ 1 ) -ue0 T (01 w0
i 1 T T
. [Ip @ (f'(x)-u(x) I}'(x)}h"(x)] h"(x)
r =} (24)
+ h'(x)TLh'(x) h'(x)T] h'(x)2q
" T "
+ e[ e-tueoT @ 1) 1] Peo

-] -

R e e e - ﬁ.&’ﬂ-—d‘;ﬁ-.—_. a o - -‘——-ﬂ "
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where
P(x) [x-h'(x)"h'(x)] - [I-h'(x)T{h'(x)h'(x)T}-l h'(x)] s

’ : 2 =
Theorem 5. Suppose f, {h,} ¢ C° . Let x be an unconstrained local

]
minimizer for the exact penalty function M(x) given by (21). If h(;) iy,

then x 1is a constrained minimizer for problem (1).
Proof: Let x = R te any point "close to" x .

Then

f(x) M(x) (x ¢ R and therefore h(x) = 0)

v

M(x) (x 1is a local unconstrained minimizer)
= f (%) (x ¢ R and therefore h(x) = 0) .

The same theorem under the same assumptions can be proved for Fletcher's
penalty function (20).

Theorem 6. Suppose f , {hj} e ¢ . Let X be an unconstrained local

minimizer for the exact penalty function F(x) given by (20). If h(x) = 0 ’

then x 1is a local minimizer for the constrained problem (1).
Proof: The proof is icentical to that of Theorem 5.

The difference tetween these approximations and the idealized exact
penalty function is that they do not guarantee, except in special cases, that
the penalty function is the value of the objective function at the closest
feasible point, plus some weight of the squared distance to that point. When
the constraints are linear and the objective function quadratic, M(x) does
have this property and, therefore, one can show that unconstrained local mini-
mizers in this instance are constrained local minimizers (actually global
minimizers). Since F(x) 1s a first-order approximation to (5) and M(x)
is a second-order approximation, one would expect that examples where spurious
local unconstrained min mizers exist to the former which do not correspond
to constrained minimizers of (1) would be more unlikely to occur for M(x) .

At present there are no examples of this.

- 14 -
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From an algorithmic poirnt of view, if in attempting to minimize
either F(x) or M(x) , the sequence of points generated is not tending
toward feasiblity. it would be no great trick to modify the algorithm to
obtain points closer to feasibility and then retry to minimize the exact

penalty functions later.

The next theorem shows another sense in which M(x) 1s closer to the
idealized exact penalty function. The Hessian matrix of M(x) at uncon-
strained local minimizers for (1) agrees with that of E(x) . This is not
the case for F(x) which is why the value of q 1s impoitant for showing
that strict local minimizers of (1) are isolated unconstrained minimizers
for F(x)

Theorem 7. Suppose f , {hj} e e, Suppose x 1s a point where f'(x)

has full row rank, and suppose further that x satisfies the second-order
sufficiency conditions for a strict isolated local minimizer. Then x
is an isolated unconstrained local unconstrained minimizer for M(x) as

given by (21) for any value of q > 0 .

Proof: Because x 1is feasible, h(x) = 0 , and (23) and (24) are applicable.
From the first-order optimality conditions for a constrained minimizer, it

is known that

£'(x) ~ u@ h'G) =0, (25)

therefore, M'(;) =0 .

Because of (25), E"(x) takes the form
= o = = - s = = e
P(x)[f"(x) - {ux) ©® In}h"(x)]P(x) F 2qh'(x) {h'(x)h'(x)"} h'(x) .
The second order sufficiency conditions imply that this is positive definite
for every q > 0 and therefore that x is an isolated unconstrained local

minimizer for (21).
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4. The Inequality Constrained Problem

The inequality -~onstrained problem can be written:

minimfze f(x)
3 (26)
subject to ni(x) 20, for L e l,0...0 «
Define R = {xlgi(x) >0, 3. Bt s natbil 5
An example of this problem is a modification of Problem (2):
minimize -X+y
(x,y) (27)
2 2
subject to - ey s L

Lines of flow associated with this problem can take forms similar to

the equality constrained Problem (2) with the major exception that the interior
of the circle is also now feasible. This means (see Figure 1) the flow lines
in the circle which are above the line - x + y = 0 are no longer valid. They
would be replaced by lines parallel to the negative gradient vector (1,--1)T .
In Figure two, the modified lines of flow would probably look like those given
in Figure 4. Here the lines would follow the negative gradient path (in the
interior of the circle) until the boundary is 'sensed" and then would curve as
a combination of the projected gradient at the boundary and t“he negative gra-

dient vector.

A useful way to view this modification is to decompose the negative
gradient of f 1into tvo parts. One is the projection of the negative gradient
on the direction which tends to the closest boundary point, and the other
that which is the difference of the negative gradient and the projected negative
gradient. This decomposition is shown in Figure 5. A natuvral modification of
the lines of flow is then to truncate the projected negative gradient vector

if it extends beyond the feasible region.

This analysis of the lines of force makes clear the exact penalty func-

tion to be used in circumstances near constraint boundaries where the objective

function has a lesser value at the closest point. The analysis is dependent upon

- 16 =
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scaling of the objective function and modifications must be made for the
circumstances which can occur here but not in the equality case. There

is also a serious combinatorial difficulty which arises. Which of the many
subspaces defines the exact penalty function? In short, the inequality con-
strained problem poses many more difficulties than the equality constrained

one.

Let M= {1,...,m} . There are > subsets of M . Denote the

tth subset by I, . By convention, let = {¢} . Let 1 >0 be a pre-
assigned number which defines the '"close" boundary points.

6 e St e | i
Also, define S, {y‘gi(y) 0, 1¢ I2 Syiie RY (28)

The minimum valne associated with SE is El(x) = + o if gi(x) > T

for some 1i ¢ Iv , or if S£ is empty. Otherwise let

L) = min || x -y || . (29)

yes,

For any point x define DQ(X) = {dlx—d solves (29) above} . Usually
there is only one vectoer in Dl(x) . Let dl(x) be any vector from DQ(X)

such that

f[x—dg(x)] = inf fx-d] . (30)

de Dz(x)
Def ine B () = flx=d,(x)] + qd:(x) d,(x) .

The exact penalty function associated with Problem (26) is

E(x) = i min o (El(x)} - (31)

This exact penalty function agrees with (5) when there are nd® inequality
constraints, &
Some isolvalue contours associated with Problem (27) are plotted in

Figure 6. Here 1t = .9 .,
[ 4
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Theorems follow which relate the local minimizers of the exact penalty
function to those of Problem (26).
Theorem 8. Suppose f , {gi} are continuous. If x 1is a local unconstrained

minimizer for the exacc penalty function (31), then it is a local minimizer

for Problem (26).

Proof: Suppose x is a local minimizer for (31). Let £ be any index de-

fining E(x) (usually there is only one such index). Let dp(;) be some
vector from D (x) fo- which E (x) is defined in (30).
£
Let € be such that 0 < e <1 . Since x - edz(;) - (l-e)dg(;) e R,
it follows from the definition of dg[;-edz(;)] that
|| dylx-ed, )] || < (=) || 4, GO || . (32)

Also by definition

[ a @ | < 1] x - {{Q-edg&n - diﬁ—edl&n} !

(33)
N & dl(;) I+ ]! dy[;-edl(;)] ||. (from the triangular
; inequality)
The last inequality is strict unless dg(;) is proportioral to
d:[i~gdp(;)] . Together (32) and (33) imply that
[ d,(x=ed, GO || = (Q-¢) || d,(x) || .
Thus, (l-€)d, (x; € Dp[I-ed2(§)] . (34)
Because of (30).
flx-ed, (x)=d {x =ed () }] < flx=ed, (x)=(1-e)d (x)]) = flx-d , (x)] . (35)

gl =
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Thus,
Efx-cd (x)] < E [x=ed, (x)] ((31))
< flx-d, (0] + (1-0)%d, " (0d, @q ((36) & (35))
< flx=d, ()] + 4, (®)d, (X (36)
= E(x) .

1f d?(x) # 0, strict ‘nequality holds in (36). Since x is an assumed
local unconstrained minimizer for E , it follows that E[;Fedl(;)] i,E(;)
for + near one and therefore that dg(;) = 0 . Thus, x € R , and also,
Ex) = E, (x) = £(x) . (37)

Now, for any x € R, El(x) = f(x) . Because x 1is an unconstrained
local minimizer for E , there is a neighborhood N(;}G) such that

E(x) > E(x) for x e N(x,6) . Let x e N(x,6) N R . Hence,

Be) = El(x) (x £ R)
> E(x) ((31))
> E(x) (x € N(x,6))
= f(x) . ((37)) - Q.E.D.

The importance of this theorem is that use of the exact penalty function
does not introduce spurious candidates for local minimizers of the inequality
constrained problem. The converse of this theorem is not true without modifi-
cation; but this is not a serious computational problem. There are two partial

converse theorems.

Theorem 9. Suppose f , {giF are continuous functions. Suppose x 1is some

local minimizer for Problem (26). Then there exists a value q > 0 such

that for q > q , x fis a local unconstrained minimizer for (31).

-??-
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Proof: Assume the conirary, that there is a sequence {x, } where x -+ x

k k
such that

B(x,) < E(x) < f(x)
for all k . Let 2(k) be an index defining R(xk)

Case (i). Without loss of generality assume that X € for

S2(k)
all k . It is clear that for any value of q > 0 ,
the proof of Theorem 2 applies and a contradiction
resuits.

Case (ii). Assume without loss of generality that x £ Sl(k)

for all k . This means that there is an index i

such that gi[xk_dL(k)(xk)] = 0 and gi(x) >0 .
Thus,
Lininf || d () 12 - vy, > 0.
k> i
7 2 = 1
Let v, ltflif f[xk—di(k)(xk)]

Then, take g to be any value such that
q > [f(I)—Ifl]/vz ’
It then follows directly that for k large
E(x) > £(x) ,

a contradiction. Q.BDs

Theorem 10. Suppose f , {g ', {hj} are continuous functions. Suppose x

is some local minimizer for Problem (26). Then there exists a value T >0

such that for all 0 < 71 < T , used in (28) x 1is a local unconstrained

minimizer for (31) for =2very q > 0 .

Proof: 1f 1+ used in defining is smdll enough, then there is a neighborhood
about x such that for every x that neighborhood, X € Sl(x) where 2(x)
is an index defining E(x) . Thus, the Case (i) proof of Theorem 9 applies.

O, k. D,
-2 %o
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5. Fletcher's Exact Penalty Function (Inequality Case)

In [2] Fletcher extended his penalty function to the case when the
problem is written with inequality constraints (26). As indicated in the
development of rthe idealized exact penalty function in Section 4, there is
a basic combinatorial problem that is not associated with the equality con-
strained problem. The problem is to determine, at any point x for which
the penalty function is to be defined, which of the many constraints define
the exact penalty function. The method given in Section 4 is theoretically

1

valid, but possibly computationally prohibitive. Fletcher resolved this

problem in the following way.
Consider the quadratic optimization problem:

for any point x ,
PO - i
minimize §
§

q 8§86 + £'(x)6

N |

(38)
subject to g(x) + g'(x)8 > 0

Let u(x,q) be a set of Kuhn-Tucker-Karush multipliers associated
with the solution of the problem and let &(x,q) denote the solution point.
Since the objective function is strictly convex, the solution point (if one
exists) is unique although, in general, the multipliers are not. The exact

penalty function at x is, then,
z
R(x) = f(x) - u(x,q) g(x) . (39)
When the multiplier vector u(x,q) is not unique, the definition is ambiguous.
Furthermore there are questions of the continuity of (39) and its levels of

differentiability. These are taken up by Fletcher and under certain regularity

assumpt ions he proves theorems concerning these matters.

To show that (39) is an approximation to (31), consider the following.

pefine A(x) to be the set of indices such that gi(x) + gi(x) §(x,q) = 0 ,

WL T A
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i.e., the constraints active or binding at the solution of (38). Then the

usual regularity assumption is that the vectors
‘g{(x)‘ s For £ Lél(x)
are linearly independent.

When this regularity assumption is satisfied, the multiplier vector
u(x,q) is unique. The components associated with the constraints whose

indices are not in @{x) are equal to zero. Let g(x) denote the vector

of constraints with indices in Q{x) . The multipliers for these constraints
are given by the formula (41) below. Then the exact penalty function takes

the form

) - £ Gog' (0 g6 + 5 a g0 g o0 g 0 g (40)
because
ueaa) = - g0 g 6o goa + g 0T 0T (41)

and

n

sGa) = (100 T 0] £ 0 T/a - 5700 o

The obvious connection between this one and his equality exact penalty
function can be made. This derivation is different from the way in which (20)
was constructed. The difference between this one and the idealized exact penalty
function (31) can be analyzed in the same way that the equality penalty func-

tions were.

It is interesting to show how Fletcher could have obtained a similar
penalty function which is closer but still essentially different from the

minimum distance point of view.
Consider the problem

minimize f(x=-8§) + %6T6q
B (42)

subject to g(x-6) > 0 .

v b ST i B v e i . w—o— wea—y T ———— = —
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For any x , let 6&(x,q) denote a solution point (local), and

u(x,q) a set of associated multipliers.

Ihe exact penalty function is defined at x by
- ;i 1 T
C(x) = flx-8(x,q)] + 56(x,q) 6(x,q)q . (43)

The questions of whether or not this has spurious local minimizers and
whether or not minimizer of the original problem are minimizers of this one

are taken up next.

Theorem 11. Tf £ , {gi} are continuous, and if x is local minimizer for

(26), then x  is a local unconstrained minimizer for the exact penalty function

(43) above for any q > 0

Proof: Pick € small enough so that x is a global minimizer for
] 1 f b

x€ {x | || x =x |] 1,2/61/q NR. Let x e N, = {X l Il x ~x || < /2e/q } £

Consider the neighborhood about 0 such that D = {6 ' [l s || < v2¢e/q } .

Then for & ¢ BND(D) % | i 8y ?!zq = %»- Zﬁ »+ q=¢ . Furthermore, for

|
|

é x =8 ~x || <|] x-x [l + | SB [ < 2 ¥2¢/q . Thus

flx~6,] > f(x) .

Together, then,

1 |‘2 I
(3 - m—
[x=65] + 3 HsR}, q > f(x) + «

But for ¢ = (x-x) ,

flx-Ge0] +5 (18 [[Pa= € +3 118 1%q

< f(x) + ¢

Therefore the infimum is taken on at an interior point.
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The converse th:orem will now be proved.

Theorem 12, EE £, {gi} are continuous functions, then any local unconstrained

minimizer for tle exact penalty function (43) for any value of q 1is a local

minimizer for the constrained Problem (26).

Proof: Let x be ¢ local unconstrained minimizer for (43). We first show

that

§(x,q) = 0 . (44)

Assume that 6(k,q) # 0 . Consider points along the ray connecting

% Eo i ~ 6(§,q) . The minimum value of (42) is clearly less than

; ’ 2
fx-60,@)) + 3a01-0° [ 8G,0) 112 < £-6G,@)1 + 30 || 8Cxoa) |

for ¢ small. This contradicts the assumption. Thus (44) must hold.

h Let x be any point feasible to (26), and 'close to" X . Then
f(x) > G(x) (since 0 1is feasible to (42) wher x ¢ R)

G(x) (assumption that x was a local unconstrained

minimizer)

= f(x) (6(x,q) = 0) . Q.E.D.
|
|
14
|
- 27 =
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